Skip Menu

Return to Skip Menu

Main Content

Zachary Byron Mackey

Asst Professor AY


Education

Ph.D., Molecular Medicine, University of Texas Health Science Center, San Antonio, 2000

B.S., Biology, University of Nebraska, Lincoln, 1990

Experience

  • 2000-2002: University of California-San Francisco Postdoctoral Fellow,Pharm. Chem.
  • 2002-2003: University of California-San Francisco Postdoctoral Fellow,Pathology
  • 2003-2008: University of California-San Francisco Associate Specialist,Pathology
  • 2009-2011: University of California-San Francisco Assistant Researcher,Pathology
  • 2011- Current: Virginia Tech. Assistant Professor, Biochemistry, Blacksburg

Selected Major Awards

  • 1998: Graduate Student Research Award UTHSC-SA
  • 2002: University of California, San Francisco Science & Health Education Partnership Mentor Award
  • 2005: Minority Trainee Research Forum Talk and Poster Presentation Award

Courses Taught

  • BCHM5124 – Biochemistry for Life Science Graduates
  • BCHM 1014 – Introduction to Biochemstry

Other Teaching and Advising

  • I am currently advising two graduate students
  • I also enjoy mentoring undergraduate students

Program Focus

DNA replication and repair represent two evolutionarily conserved DNA metabolism pathways that function to maintain genomic integrity in all kingdoms. These pathways in kinetoplastid parasites are fascinating because they contain rapidly evolving genes with atypical biological and biochemical properties that contrast to properties of their mammalian host orthologs. Our long-term goal is to understand the molecular anatomy of essential genes that guard genomic integrity in BSF Trypanosoma brucei. Understanding T. brucei DNA replication and repair pathways down to the mechanistic detail has valuable implications for mutagenesis and carcinogenesis. Essential DNA replication or repair pathway members with atypical properties represent targets that can be harvested as “low hanging fruit” for parasite-specific therapies.

Current Projects

Understanding how TbERK8 regulates DNA replication in Bloodstream Form (BSF) T. brucei.

We had identified TbERK8, an essential extracellular-signal regulated kinase (ERK) family member. ERKs are serine/threonine-specific protein kinases that direct cellular responses to a diverse array of external signals. They regulate proliferation, gene expression, differentiation, mitosis, cell survival, apoptosis and are implicated in DNA damage response. We demonstrate that silencing TbERK8 in BSF T. brucei causes replication arrest, severe nuclear fragmentation and stage-specific lethality in the parasite. No lethal consequence was reported when others had silenced the ERK8 homolog in human cells. ERK8 deficient human cell show decreased levels of replication and increased levels of DNA strand breaks, indicating that the influence of ERK8 homologs on DNA replication and repair is conserved across divergent eukaryotic species. Our results demonstrate that the lethal effect of silencing TbERK8 is specific to BSF T. brucei.

Examining the DNA Ligase I mechanism in Trypanosoma brucei.

DNA ligase I represents the only replicative ligase family member T. brucei. My goal is to identify and characterize the DNA metabolism pathway(s) in BSF T. brucei that involves DNA ligase I.

    Zachary Mackey